Singular Schrödinger Operators as Self-adjoint Extensions of N-entire Operators
نویسنده
چکیده
We investigate the connections between Weyl–Titchmarsh– Kodaira theory for one-dimensional Schrödinger operators and the theory of n-entire operators. As our main result we find a necessary and sufficient condition for a one-dimensional Schrödinger operator to be nentire in terms of square integrability of derivatives (w.r.t. the spectral parameter) of the Weyl solution. We also show that this is equivalent to the Weyl function being in a generalized Herglotz–Nevanlinna class. As an application we show that perturbed Bessel operators are n-entire, improving the previously known conditions on the perturbation.
منابع مشابه
Error bounds in approximating n-time differentiable functions of self-adjoint operators in Hilbert spaces via a Taylor's type expansion
On utilizing the spectral representation of selfadjoint operators in Hilbert spaces, some error bounds in approximating $n$-time differentiable functions of selfadjoint operators in Hilbert Spaces via a Taylor's type expansion are given.
متن کاملBoundary Triples and Weyl Functions for Singular Perturbations of Self-adjoint Operators
Given the symmetric operator AN obtained by restricting the self-adjoint operator A to N , a linear dense set, closed with respect to the graph norm, we determine a convenient boundary triple for the adjoint A N and the corresponding Weyl function. These objects provide us with the self-adjoint extensions of AN and their resolvents.
متن کاملOn Spectral Theory for Schrödinger Operators with Strongly Singular Potentials Fritz Gesztesy and Maxim Zinchenko
We examine two kinds of spectral theoretic situations: First, we recall the case of self-adjoint half-line Schrödinger operators on [a,∞), a ∈ R, with a regular finite end point a and the case of Schrödinger operators on the real line with locally integrable potentials, which naturally lead to Herglotz functions and 2 × 2 matrix-valued Herglotz functions representing the associated Weyl–Titchma...
متن کاملOn Spectral Theory for Schrödinger Operators with Strongly Singular Potentials
We examine two kinds of spectral theoretic situations: First, we recall the case of self-adjoint half-line Schrödinger operators on [a,∞), a ∈ R, with a regular finite end point a and the case of Schrödinger operators on the real line with locally integrable potentials, which naturally lead to Herglotz functions and 2× 2 matrix-valued Herglotz functions representing the associated Weyl–Titchmar...
متن کاملFunctional Determinants for General Self-adjoint Extensions of Laplace-type Operators Resulting from the Generalized Cone
In this article we consider the zeta regularized determinant of Laplace-type operators on the generalized cone. For arbitrary self-adjoint extensions of a matrix of singular ordinary differential operators modelled on the generalized cone, a closed expression for the determinant is given. The result involves a determinant of an endomorphism of a finite-dimensional vector space, the endomorphism...
متن کامل